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Region visited by a spherical Brownian particle in the presence of an absorbing boundary
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We calculate the time dependence of the average volume of a Wiener sausage in the presence of an
absorbing boundary in one and three dimensions. In one dimension it is shown that the presence of an
absorbing point reduces the time dependence of the average span from being proportifnal & un-
bounded space, to being proportional ta)r&t long times. In three dimensions the average volume increases
as 't at long times rather than being proportionalttas in free space.
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[. INTRODUCTION increases is significantly smaller than in free spacedIn
=1 dimension thet'? dependence in free space will be
The number of distinct sites visited by a lattice randomshown to be replaced by a th(dependence in the limit

walk in timet and its continuous counterpart, the volume of —, and ind=3 proportionality tot is replaced by a pro-
the region swept out by a spherical Brownian particle, haveportionality tot*2
been used to model a variety of chemical and physical phe- All of the following analysis will be based on a general
nomena. For example, properties of these and related moddigrmalism for calculating the average volume of a Wiener
have been analyzed to generalize the Smoluchowski theogausage discussed in Sec. Il. In Secs. Il and IV these general
of diffusion-limited reaction§1—3]. Another potential appli- results will be applied in one and three dimensions.
cation of these ideas is the use of random walk models to
interpret data from optical imaging techniques in biomedi-
cine. These are based on laser injected photons that move

through the tissue and gather information related to optical Let W,(r,) be the trajectory followed by the center of a
parameters that may be used for diagnostic purpdges],  sphere of radiu®, initially at r,, that moves as a Brownian
In these applications it is important to be able to estimate th@article for a timet. The position of the center at timest
amount and location of tissue interrogated by the photons. will be denoted bth(T) (to simplify the notation the argu-

n mo.deling such gxperiments an importgnt component iIanentro in the subscript is omittedThe region swept out by
formulating the physical problem is the existence of an in-

: - . the sphere is the Wiener sausage, and its volume will be
fcerface betwee_:n the tissue and the exterior space, since da&@noted byv (W;(rg)). Since translational invariance of the
in these experiments consists of measurements of light 'nte%'pace is destroyed by the presence of a boundary, it is im-
sity on the surface. To a good approximation the interfac%ortant to retain the dependence on initial position.’
can be taken to be an absorbing plai, A crude estimate A formal expression for the volume can be written in
of the tissue interrogated in continuous-wave experiment§erms of an indicator functioh(r|W,) that is equal to 1 when
has been described fid]. A possibly more accurate estimate the distance betweew. and the tpointr has been smaller
can be based on the expected number of distinct sites ViSite[Han R and equal to Ot otherwise. With this definition the
by a random walker before being trapped by the absorbingOlume of the Wiener sausage is '
boundary. This motivates the analysis in the present paper.

The random variables described earlier have been ana-
lyzed when the random walk or Brownian motion occurs in _
an unbounded spacf8—12]. However, the existence of an U(Wt(r(’))_f H(r|Wi(ro)dr. @
absorbing boundary is a significant feature of the underlying
physical phenomenon. It is, therefore, of interest to underT

. : o o calculate the average value © ro)), therefore, re-
stand how constraints are able to influence statistical propeg 9 (Wilro))

Il. AVERAGE VOLUME OF THE WIENER SAUSAGE

i £ th q iables. In th ( h juires finding the average of the indicator function. This
Ies of Ine random vanables. In he present paper we stu ctional, (1 (r|W(ro))), is the fraction of trajectories that
the average volume of the Wiener sausage in the presence Rlve at least once during the timeisited a spherical do-
an absorbing boundary in one and three dimensions. It i% Y £ - ' ;

. . . . R . Th 1(r|W, h
evident from physical considerations that boundary effect% ain of radiusR centered ar us (1 (r|Wy(ro))) is the

; . robability that a point Brownian particle, originally a§,
manifest themselves at times of the order of, and longer thal as been absorbed in tineby a spherical trap of radiug

a characteristic time for the diffusing particle to reach thecentered atr. To simplify the notation we sef(t|r|ro)

boundary. On this time scale the rate at which the volume:<|(r|wt(r0))>. Then the average volume is
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Thus, to find the average volume we need to derive the trap- Solving the diffusion equation one finds the Laplace
ping probabilityq(t|r|rg). transform of the trapping probability to be

The span and volume in an unbounded space

. . 1 ‘
An exact solution for the average volume of the Wiener G(s|x|xg)= = | e~ *o™VFPH(x;—x)
sausage in a-dimensional free space valid for all values of S

the time has been calculated[ib2]. A more general formu-

lation of the problem has been proposed and analyzed in

[8—10]. Because of the generality of that formulation only . \F

results in thet— o limit were found. Here we sumarize re- sm?-(xo D

sults in one and three dimensions derivedil] that will be + —SH(X—Xo) : 9
used for comparison in further discussions. In one dimension sin)’( X \/:)

the Wiener sausage is the sum of the particle size and the D

span generated by the center of the particle. Hence all of th.le

information of interest is encapsulated in the span. In one his leads to a representation of the Laplace transform of the

dimension the probability that a particle, initially &%, is span as
absorbed by a trap atby timet is
R D e
(Lislxo))=\/ g} 1-e 7
(txxp)—erfe] 220 @ )
X|xq) = erfc ,
R 2\Dt r( \F) 1+e %00
+sinh X \/=|In| ———== . (10
in which D is the diffusion constant and erg(is the °VD 1—e %D (10
complementary error functiofil3]. The average span on an )
unbounded line is readily found to be The long-time behavior ofL(s|xg)) can be inferred from

the smalls behavior of this expression. If desired it can also
* /Dt be inverted explicitly in terms of an infinite series from
(L(t)= Jiwq(t|x|x0)dx—4 T (4) which its behavior can be found for all values of the time.
The long- and short-time behaviors @f(t|x,)) can be
In 3D the volume of the Wiener sausage at tinieto be  estimated from the small- and largesehaviors of Eq(10)
calculated rather than a span. The trapping probability in fre@nd are found to be

space is
Dt 5
a(tlr|re)=attllr—ro)=H(R~|r—rg|) AN t=<xy/D
L(t|Xg))=
+ R Ir=rol R H(| |-R) e 1+ 24 \/TDtH t>x2/D
r—ro|—R), X —+In| \/—]|]|, t :
[r=rg] 2Dt ° 12 X ’

11)

(5
) N . wherey=~0.6 is Catalan’s constant. The early-time behavior
where H(z) is the heaviside step function. To calculate  this equation is exactly that in Ed4), which is to be

(uv(t)) requires integrating this expression over all space, iyypected since the probability that the diffusing particle
which case one finds, reaches the absorbing boundarykat0 is low at the earliest
. times. At long times there is a good chance that the particle
(v(t))= —R%+8R?\/7Dt+47RDt. (6) has been trapped, with the result that the growth rate of the
3 average span is dramatically slowed. Finally, we mention
that the two limiting time-dependent behaviors in Efyl)
Ill. THE 1D SPAN WITH A TRAPPING POINT are the same as those for the expected number of distinct
) ) o sites visited by a lattice random walk when the timés
Irll.th|s calculauon we set the trap a&=0 and the |n|t|al. replaced by the number of stepsand the multiplicative
position of the particle ak,>0. Then the average span is constant is changed to one appropriate to the random walk

given by picture.
(L(t|x0)>=f q(t]x|xg)dx (7 IV. AVERAGE 3D VOLUME
0
. _ . In this section we calculate the behavior in time of the
and its Laplace transform with respecttt average volume generated by a sphere of raio®ving as
B a Brownian particle in the presence of an absorbing plane at
(I:(s|x0)>= f 8(s|x|xo)dx. (8) z=0. The particle will be assumed to move in the half-space
0 z>0. The initial position of the particle is taken to bg
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=(0,0z,) with the obvious restriction that,>R. It will be R r

assumed that the particle is absorbed as soon as its center q(t|r)~ —erfc . (16)
: : : r V4Dt

comes into contact with the wall. The general expression for

the average volume in this case takes the form

The resulting integral is difficult to deal with in the time
domain, but its Laplace transform with respect ie readily

<v(t|zo)>=f q(g|r|rg)dr. (12 evaluated. This functions (s|zp)), is
z>0
. . . V( +
The method of images will be used to guarantee satisfac- (7 (s|zy))~ _j J exf V(s/D)(£+2° ]
tion of the trapping boundary condition. Hence we consider §+Z
the diffusion problem for a point particle in the presence of 4 RD
two absorbing spheres of radil® centered ar=(x,y,z) 7 [1—exp(—2zo\/s/D)]. (17)

and r'=(x,y,—z), respectively. The trapping probability
a(tlriro) in the presence of the absorbing .pllanze) can be ®The inverse transform of this function sfcan be evaluated
pressed in terms of two trapping probab|I|t|ex§l, (t|r|ro) exactly, leading to the final expression

and q$2(t|r'|ro) found by solving the two-trap problem in ’ ’

free space. These are the probabilities that the particle, ini- t 2,

tially atrg, has been trapped by timéy the first and second (v(t]zp))~4nR Df erf( ) dr

trap, respectively. The expression fpft|r|ro) is 0 2\D7

q(tlrlro)=a?(tlr|re) — a5 (tlr'[ro). (13) :47,Rm|2“e

We make the further assumption ttge>R. In this case 7
the main contribution to the value of the integral in E&2) (18
comes from configurations in which the distance between the
trap and plane is much larger than the radius of the spherm which \=2o/J4Dt.
z>R. For such configurations the two trapping probabilities
on the right-hand side of Eq13) can be approximated by
the expression given in E@5). This leads to

,)\2

+ 222 erfc()\)+erf(>\)] ,

* The expression in Eq18) shows that(v(t|z,)) grows
linearly with time at times smaller thazﬁ/D, but at longer
times the growth rate decreases and the average volume is
proportional toyt,

Az(tlr[ro)=alt|Vp+(z—20)°1—qlt[Np*+ (z+ 20) ](114) 47RDt, t<z/D

v(t|zg))=~
o . ., (o(tlzo) 8z,R\7Dt t>Z2D.
in which p is the radial coordinatp=x“+y<“. The average
volume of the Wiener sausage in this approximation is, thereAgain, thet dependence of this result can be replaced by an

(19

fore, given by n dependence in the context of the average distinct number
of sites visited by a lattice random walk.
% ” In summary, the main results in this paper are the expres-
t|zp))~4 dzf t|Vp%+2%)p dp. 15 . ' i : '
(v(tlzo)) Wfo 0 altive Jpdp (19 sions for the average span in one dimension and the average

volume of the Wiener sausage in three dimensions, given in
Since our interest is the time dependence of the averagegs. (11) and (19). They show how the presence of an ab-
volume for timest that satisfyt>R?/D we use a simplified sorbing boundary slows the growth of these variables as a
version of the expression fay(t||r —r,|) given in Eq.(5) function of time as compared to the growth in free space.
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