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Region visited by a spherical Brownian particle in the presence of an absorbing boundary
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We calculate the time dependence of the average volume of a Wiener sausage in the presence of an
absorbing boundary in one and three dimensions. In one dimension it is shown that the presence of an
absorbing point reduces the time dependence of the average span from being proportional toAt in an un-
bounded space, to being proportional to ln(t) at long times. In three dimensions the average volume increases
asAt at long times rather than being proportional tot as in free space.
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I. INTRODUCTION

The number of distinct sites visited by a lattice rando
walk in time t and its continuous counterpart, the volume
the region swept out by a spherical Brownian particle, ha
been used to model a variety of chemical and physical p
nomena. For example, properties of these and related mo
have been analyzed to generalize the Smoluchowski th
of diffusion-limited reactions@1–3#. Another potential appli-
cation of these ideas is the use of random walk models
interpret data from optical imaging techniques in biome
cine. These are based on laser injected photons that m
through the tissue and gather information related to opt
parameters that may be used for diagnostic purposes,@4,5#.
In these applications it is important to be able to estimate
amount and location of tissue interrogated by the photon

In modeling such experiments an important componen
formulating the physical problem is the existence of an
terface between the tissue and the exterior space, since
in these experiments consists of measurements of light in
sity on the surface. To a good approximation the interfa
can be taken to be an absorbing plane,@6#. A crude estimate
of the tissue interrogated in continuous-wave experime
has been described in@7#. A possibly more accurate estima
can be based on the expected number of distinct sites vis
by a random walker before being trapped by the absorb
boundary. This motivates the analysis in the present pap

The random variables described earlier have been
lyzed when the random walk or Brownian motion occurs
an unbounded space,@8–12#. However, the existence of a
absorbing boundary is a significant feature of the underly
physical phenomenon. It is, therefore, of interest to und
stand how constraints are able to influence statistical pro
ties of the random variables. In the present paper we st
the average volume of the Wiener sausage in the presen
an absorbing boundary in one and three dimensions.
evident from physical considerations that boundary effe
manifest themselves at times of the order of, and longer th
a characteristic time for the diffusing particle to reach t
boundary. On this time scale the rate at which the volu

*Permanent address: Karpov Institute of Physical Chemistry
Vorontsovo Pole Street, 103064 Moscow K-64, Russia.
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increases is significantly smaller than in free space. Ind
51 dimension thet1/2 dependence in free space will b
shown to be replaced by a ln(t) dependence in the limitt
→`, and ind53 proportionality tot is replaced by a pro-
portionality to t1/2.

All of the following analysis will be based on a gener
formalism for calculating the average volume of a Wien
sausage discussed in Sec. II. In Secs. III and IV these gen
results will be applied in one and three dimensions.

II. AVERAGE VOLUME OF THE WIENER SAUSAGE

Let Wt(r0) be the trajectory followed by the center of
sphere of radiusR, initially at r0 , that moves as a Brownian
particle for a timet. The position of the center at timet<t
will be denoted byrWt

(t) ~to simplify the notation the argu

mentr0 in the subscript is omitted!. The region swept out by
the sphere is the Wiener sausage, and its volume will
denoted byv„Wt(r0)…. Since translational invariance of th
space is destroyed by the presence of a boundary, it is
portant to retain the dependence on initial position.

A formal expression for the volume can be written
terms of an indicator functionI (r uWt) that is equal to 1 when
the distance betweenWt and the pointr has been smalle
than R and equal to 0 otherwise. With this definition th
volume of the Wiener sausage is

v„Wt~r0!…5E I „r uWt~r0!…dr . ~1!

To calculate the average value ofv„Wt(r0)…, therefore, re-
quires finding the average of the indicator function. Th
functional, ^I „r uWt(r0)…&, is the fraction of trajectories tha
have, at least once, during the timet visited a spherical do-
main of radiusR centered atr . Thus ^I „r uWt(r0)…& is the
probability that a point Brownian particle, originally atr0 ,
has been absorbed in timet by a spherical trap of radiusR
centered atr . To simplify the notation we setq(tur ur0)
5^I „r uWt(r0)…&. Then the average volume is

^v„Wt~r0!…&5E ^I „r uWt~r0!…&dr5E q~ tur ur0!dr . ~2!
0
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Thus, to find the average volume we need to derive the t
ping probabilityq(tur ur0).

The span and volume in an unbounded space

An exact solution for the average volume of the Wien
sausage in ad-dimensional free space valid for all values
the time has been calculated in@12#. A more general formu-
lation of the problem has been proposed and analyze
@8–10#. Because of the generality of that formulation on
results in thet→` limit were found. Here we sumarize re
sults in one and three dimensions derived in@12# that will be
used for comparison in further discussions. In one dimens
the Wiener sausage is the sum of the particle size and
span generated by the center of the particle. Hence all of
information of interest is encapsulated in the span. In o
dimension the probability that a particle, initially atx0 , is
absorbed by a trap atx by time t is

q~ tuxux0!5erfcS ux2x0u

2ADt
D , ~3!

in which D is the diffusion constant and erfc(z) is the
complementary error function,@13#. The average span on a
unbounded line is readily found to be

^L~ t !&5E
2`

`

q~ tuxux0!dx54ADt

p
. ~4!

In 3D the volume of the Wiener sausage at timet is to be
calculated rather than a span. The trapping probability in f
space is

q~ tur ur0!5q~ tuur2r0u!5H~R2ur2r0u!

1
R

ur2r0u
erfcS ur2r0u2R

2ADt
D H~ ur2r0u2R!,

~5!

where H(z) is the heaviside step function. To calcula
^v(t)& requires integrating this expression over all space
which case one finds,

^v~ t !&5
4p

3
R318R2ApDt14pRDt. ~6!

III. THE 1D SPAN WITH A TRAPPING POINT

In this calculation we set the trap atx50 and the initial
position of the particle atx0.0. Then the average span
given by

^L~ tux0!&5E
0

`

q~ tuxux0!dx ~7!

and its Laplace transform with respect tot is

^L̂~sux0!&5E
0

`

q̂~suxux0!dx. ~8!
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Solving the diffusion equation one finds the Lapla
transform of the trapping probability to be

q̂~suxux0!5
1

sF e2~x02x!As/DH~x02x!

1

sinhS x0A s

D D
sinhS xA s

D D H~x2x0!G . ~9!

This leads to a representation of the Laplace transform of
span as

^L̂~sux0!&5AD

s3 H 12e2x0As/D

1sinhS x0A s

D D lnS 11e2x0As/D

12e2x0As/DD J . ~10!

The long-time behavior of̂ L̂(sux0)& can be inferred from
the small-s behavior of this expression. If desired it can al
be inverted explicitly in terms of an infinite series fro
which its behavior can be found for all values of the time

The long- and short-time behaviors of^L(tux0)& can be
estimated from the small- and large-s behaviors of Eq.~10!
and are found to be

^L~ tux0!&'5 4ADt

p
, t!x0

2/D

x0F11
g

2
1 lnSA4Dt

x0
2 D G , t@x0

2/D.

~11!

whereg'0.6 is Catalan’s constant. The early-time behav
in this equation is exactly that in Eq.~4!, which is to be
expected since the probability that the diffusing partic
reaches the absorbing boundary atx50 is low at the earliest
times. At long times there is a good chance that the part
has been trapped, with the result that the growth rate of
average span is dramatically slowed. Finally, we ment
that the two limiting time-dependent behaviors in Eq.~11!
are the same as those for the expected number of dis
sites visited by a lattice random walk when the timet is
replaced by the number of stepsn and the multiplicative
constant is changed to one appropriate to the random w
picture.

IV. AVERAGE 3D VOLUME

In this section we calculate the behavior in time of t
average volume generated by a sphere of radiusR moving as
a Brownian particle in the presence of an absorbing plan
z50. The particle will be assumed to move in the half-spa
z.0. The initial position of the particle is taken to ber0
4-2
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5(0,0,z0) with the obvious restriction thatz0.R. It will be
assumed that the particle is absorbed as soon as its c
comes into contact with the wall. The general expression
the average volume in this case takes the form

^v~ tuz0!&5E
z.0

q~gur ur0!dr . ~12!

The method of images will be used to guarantee satis
tion of the trapping boundary condition. Hence we consi
the diffusion problem for a point particle in the presence
two absorbing spheres of radiusR, centered atr5(x,y,z)
and r 85(x,y,2z), respectively. The trapping probabilit
q(tur ur0) in the presence of the absorbing plane can be
pressed in terms of two trapping probabilities,q1

(2)(tur ur0)
and q2

(2)(tur 8ur0) found by solving the two-trap problem i
free space. These are the probabilities that the particle,
tially at r0 , has been trapped by timet by the first and second
trap, respectively. The expression forq(tur ur0) is

q~ tur ur0!5q1
~2!~ tur ur0!2q2

~2!~ tur 8ur0!. ~13!

We make the further assumption thatz0@R. In this case
the main contribution to the value of the integral in Eq.~12!
comes from configurations in which the distance between
trap and plane is much larger than the radius of the sph
z@R. For such configurations the two trapping probabiliti
on the right-hand side of Eq.~13! can be approximated b
the expression given in Eq.~5!. This leads to

q2~ tur ur0!'q@ tuAr21~z2z0!2#2q@ tuAr21~z1z0!2#,
~14!

in which r is the radial coordinater25x21y2. The average
volume of the Wiener sausage in this approximation is, the
fore, given by

^v~ tuz0!&'4pE
0

z0
dzE

0

`

q~ tuAr21z2!r dr. ~15!

Since our interest is the time dependence of the ave
volume for timest that satisfyt@R2/D we use a simplified
version of the expression forq(tuur2r0u) given in Eq.~5!
-
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q~ tur !'
R

r
erfcS r

A4Dt
D . ~16!

The resulting integral is difficult to deal with in the tim
domain, but its Laplace transform with respect tot is readily
evaluated. This function,̂v̂(suz0)&, is

^v̂~suz0!&'
2pR

s E
0

z0
dzE

0

` exp@A~s/D !~j1z2!#

Aj1z2
dj

5
4pRD

s2 @12exp~2z0As/D !#. ~17!

The inverse transform of this function ofs can be evaluated
exactly, leading to the final expression,

^v~ tuz0!&'4pRDE
0

t

erfS z0

2ADt
D dt

54pRDtH 2le2l2

Ap
12l2 erfc~l!1erf~l!J ,

~18!

in which l5z0 /A4Dt.
The expression in Eq.~18! shows that̂ v(tuz0)& grows

linearly with time at times smaller thanz0
2/D, but at longer

times the growth rate decreases and the average volum
proportional toAt,

^v~ tuz0!&'H 4pRDt, t!z0
2/D

8z0RApDt t@z0
2/D.

~19!

Again, thet dependence of this result can be replaced by
n dependence in the context of the average distinct num
of sites visited by a lattice random walk.

In summary, the main results in this paper are the exp
sions for the average span in one dimension and the ave
volume of the Wiener sausage in three dimensions, give
Eqs. ~11! and ~19!. They show how the presence of an a
sorbing boundary slows the growth of these variables a
function of time as compared to the growth in free space
lk
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